Barnard, J., & Rubin, D. B. (1999). Small-sample degrees of freedom with multiple imputation. Biometrika, 86(4), 948–955.
Collins, L. M., Schafer, J. L., & Kam, C. M. (2001). A comparison of inclusive and restrictive missing-data strategies in modern missing-data procedures.
Psychological Methods,
6(4), 330–351.
https://doi.org/10.1037/1082-989X.6.4.330
Gaffert, P., Meinfelder, F., & Bosch, V. (2016).
midastouch: Towards an MI-proper predictive mean matching [Discussion paper].
https://www.uni-bamberg.de/fileadmin/uni/fakultaeten/sowi_lehrstuehle/statistik/Personen/Dateien_Florian/properPMM.pdf
Hilbe, J. M. (2011). Negative binomial regression (\(2^{\text{nd}}\) ed.). Cambridge University Press.
Kleinke, K. (2017). Multiple imputation under violated distributional assumptions – a systematic evaluation of the assumed robustness of predictive mean matching.
Journal of Educational and Behavioral Statistics,
42(4), 371–404.
https://doi.org/10.3102/1076998616687084
Kleinke, K., & Reinecke, J. (2013). Multiple imputation of incomplete zero-inflated count data.
Statistica Neerlandica,
67(3), 311–336.
https://doi.org/10.1111/stan.12009
Kleinke, K., & Reinecke, J. (2015a). Multiple imputation of multilevel count data. In U. Engel, B. Jann, P. Lynn, A. Scherpenzeel, & P. Sturgis (Eds.), Improving Survey Methods: Lessons from Recent Research (pp. 381–396). Routledge, Taylor & Francis.
Kleinke, K., & Reinecke, J. (2015b). Multiple imputation of overdispersed multilevel count data. In U. Engel (Ed.), Survey Measurements. Techniques, Data Quality and Sources of Error (pp. 209–226). Campus/The University of Chicago Press.
Lambert, D. (1992). Zero-inflated poisson regression. With an application to defects in manufacturing. Technometrics, 34(1), 1–14.
Mullahy, J. (1986).
Specification and testing of some modified count data models.
Journal of Econometrics,
33(3), 341–365.
https://doi.org/10.1016/0304-4076(86)90002-3
Raghunathan, T. E., Lepkowski, J. M., Van Hoewyk, J., & Solenberger, P. (2001). A multivariate technique for multiply imputing missing values using a sequence of regression models. Survey Methodology, 27(1), 85–96.
Rubin, D. B. (1976). Inference and missing data.
Biometrika,
63(3), 581–592.
https://doi.org/10.1093/biomet/63.3.581
Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. Wiley.
Schafer, J. L. (1997a). Analysis of incomplete multivariate data. Chapman & Hall.
Schafer, J. L. (1997b). Imputation of missing covariates under a general linear mixed model [Technical Report 97-10]. Pennsylvania State University, The Methodology Center.
Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art.
Psychological Methods,
7(2), 147–177.
https://doi.org/10.1037/1082-989X.7.2.147
van Buuren, S. (2012). Flexible imputation of missing data. Chapman & Hall / CRC.
van Buuren, S., & Groothuis-Oudshoorn, K. (2011). MICE: Multivariate imputation by chained equations in R. Journal of Statistical Software, 45(3), 1–67.
von Hippel, P. T. (2013). Should a normal imputation model be modified to impute skewed variables? Sociological Methods & Research, 42(1), 105–138.
Yu, L. M., Burton, A., & Rivero-Arias, O. (2007). Evaluation of software for multiple imputation of semi-continuous data.
Statistical Methods in Medical Research,
16(3), 243–258.
https://doi.org/10.1177/0962280206074464
Zeileis, A., Kleiber, C., & Jackman, S. (2008). Regression models for count data in R. Journal of Statistical Software, 27(8), 1–25.